Education  
comments_image Comments

Calling All Innovators

The five essential practices schools must adopt to build the innovators our future demands.

Continued from previous page

 
 
Share

Trial and Error Versus Risk Avoidance

The most innovative companies celebrate failure. At IDEO, a design and consulting firm that is consistently recognized as one of the most innovative companies in the world, the motto is, “Fail early and often.” Most high school and college classes penalize failure and thus discourage students from taking intellectual risks. In contrast, schools with a culture of innovation teach students to view trial and error—and failure—as integral to the problem-solving process. One Olin college student told me, “We don’t talk about failure here. We talk about iteration.” Students at Olin often become interested in a particular problem and begin working on a possible solution in a class, and then complete some kind of prototype or version 1.0 as a project for the course. They then continue to study the problem and evolve the project in succeeding classes, with feedback from their peers and teachers.

Creating Versus Consuming

Students’ experience in most high school and college courses focuses on acquiring knowledge by passively listening to lectures. In contrast, in schools with a culture of innovation, the primary goal is to acquire knowledge and develop skills while solving a problem, creating a product, or generating a new understanding. Students are creators, not mere consumers. They acquire knowledge on an as-needed basis, as a means to an end. The range of projects I found in the schools mentioned above was stunning. For example, at High Tech High, I interviewed a young woman who had created an elementary curriculum for teaching about the ecology of the San Diego Bay. At Olin, I talked to a team of 10 students who had designed and built a remotely controlled model sailboat for an international competition, learning an enormous amount about mechanical and electrical engineering, computer science, weather, and sailing strategy in the process. These students understand and retain far more of what they learn because they have studied and used the knowledge in an applied context.

Intrinsic Versus Extrinsic Motivation

Conventional academic classes rely on extrinsic incentives as motivators for learning. Although many teachers may espouse the value of learning for its own sake, they nevertheless rely heavily on traditional carrots and sticks to ensure that students come to class and learn the material. Perhaps the most important finding of my research is that young innovators are not primarily motivated by extrinsic incentives. Even those who come from families that have struggled economically are intrinsically motivated. As a consequence, the programs that do the best job of educating young innovators focus on intrinsic motivations for learning through a combination of play, passion, and purpose: playful, discovery-based learning leads young people to find and pursue a passion, which eventually evolves into a deeper sense of purpose.

Portrait of an Innovating Teacher

The Intel Science Talent Search, the oldest and most prestigious pre-collegiate science competition in the United States, annually awards more than $1.25 million in prizes and scholarships. Amanda Alonzo, a science teacher at Lynbrook High School in San Jose, California, has mentored two Intel Science Prize finalists and 10 semifinalists in the last two years—more than any other public school teacher in the United States. Her secret? Using the five essential practices described here to create a culture of innovation in her after-school, noncredit Intel Club.

Amanda requires students to work in pairs to develop and refine their research project concepts. The projects they pursue always demand a multidisciplinary approach and must result in the creation of something useful. For example, one of her students is working on a smartphone application that uses the phone’s camera to track the eye movements of someone who has been drinking alcohol to determine whether it would be safe for that person to drive. To develop this app, the student needed to know about the biology of sight, the physics of light, engineering, and computer programing. Presenting her project required speaking, writing, and graphic skills. Establishing the product’s social relevance required social science knowledge and logical thinking. Amanda also recognizes the importance of giving the students ownership of what they are learning and making the work fun so that they are motivated to persevere in spite of failures. “One of the most important things I have to teach them,” she commented, “is that when you fail, you are learning. I show them examples of where other scientists didn’t get results either.”

 
See more stories tagged with: