comments_image Comments

Was Lou Gehrig's ALS Caused by Drinking Water?

A toxic molecule found in pond scum may trigger neurodegenerative diseases such as ALS and Parkinson's. A group of scientists could hold the key to a cure.

Continued from previous page


I knew that Texas’s Lake Houston, which supplies drinking water to residents of this country’s fourth largest city, including me, regularly has cyanobacterial blooms, so I collected water and sediment from the lake and mailed it to the institute. It returned positive for BMAA. Houston’s Northeast Water Treatment Plant uses coagulation, sedimentation, and sand-filtration processes, so I can only hope they remove the BMAA.

There are potentially bigger problems further north. According to Stommel’s research in New England, the rate of ALS doubles around lakes where cyanobacterial blooms have been reported. For people living around Lake Mascoma in New Hampshire, the prevalence of ALS was 10 to 25 times the normal rate. At present, no water facilities are known to test for BMAA, though in a 2005 article in Proceedings of the National Academy of Sciences, Cox and his colleagues suggested it would be prudent to monitor BMAA concentrations in drinking water contaminated by cyanobacterial blooms. Researchers at the institute have created an antibody that binds with BMAA and could be used in a simple dipstick-type water test. They’ve also developed the technology for a filter that would remove the compound. Cox hopes some company will commercialize these technologies. “We’re not a commercial lab,” he says. “We need to focus on finding a cure.”

In a world where poisons assault us from every angle — air, water, food, cosmetics — people tend to either overreact or ignore the problem. “You can cause panic pretty easily,” says Banack. “We want to urge measured caution.”

• • • • • • • • • • • • • • •

Banack and Cox say they believe the paradigm is shifting in the science of neurodegenerative diseases. For the past decade or so, most funds have gone toward seeking genes that cause neurodegenerative diseases. “If there’s a gene that can cause ALS, then maybe there’s some way to block it. Everybody’s been looking at genetics,” says Banack. “There’s some good research out there, but as Cox says, scientists have been kicking the same ball for 15 years.” Given that 90 percent of cases haven’t yet been explained by genetics, more scientists have begun assessing environmental triggers.

One thing going for the institute’s research is the variety of fields represented in Cox’s consortium of scientists. Too often scientists work in disciplinary silos, “and the silos are not communicating,” says Cox. “A lot of neurologists never heard of cyanobacteria, and a lot of cyanobacterial people were not that familiar with ALS. But there have been a lot of really smart people working really hard for a long time, and there has just not been any progress in terms of discovering new therapies. It’s going to require an interdisciplinary group to approach the problem from a number of different angles.

“The paradigm here that is emerging is that there are ties between environmental health and human health,” Cox goes on. “There is a tie between cyanobacteria and human health. I think that’s pretty well accepted. And at this point we suspect there may be a tie between cyanobacterial toxins and your risk of progressive neurodegenerative disease — but it’s still a hypothesis.”

“If we can disprove it, we can go move on to something else,” adds Banack. “But so far we’ve been unable to disprove it. The data support the hypothesis.”

“We probably have some details wrong,” Cox admits. “But at this point, it’s hard to think that we, including all 20 universities focusing on it, are totally on a wild-goose chase.”

Wendee Holtcamp is a Houston-based writer whose work has appeared in Scientific American, Smithsonian, National Wildlife, Audubon, Sierra and Nature.

See more stories tagged with: