comments_image Comments

Naomi Klein: Hunting the Ocean for BP's Missing Millions of Barrels of Oil

As the gulf is declared "safe," scientists look deep in the sea for evidence of lasting damage.

Continued from previous page


According to experiments performed by scientists at the University of South Florida, there is good reason for alarm. When it was out in the gulf in August, the WeatherBird II collected water samples from multiple locations. Back at the university lab, John Paul, a professor of biological oceanography, introduced healthy bacteria and phytoplankton to those water samples and watched what happened. What he found shocked him. In water from almost half of the locations, the responses of the organisms "were genotoxic or mutagenic"—which means the oil and dispersants were not only toxic to these organisms but caused changes to their genetic makeup. Changes like these could manifest in a number of ways: tumors and cancers, inability to reproduce, a general weakness that would make these organisms more susceptible to prey—or something way weirder.

Before we left on the cruise, I interviewed Paul in his lab; he explained that what was so "scary" about these results is that such genetic damage is "heritable," meaning the mutations can be passed on. "It's something that can stand around for a very long time in the Gulf of Mexico," Paul said. "You may be genetically altering populations of fish, or zooplankton, or shrimp, or commercially important organisms.... Is the turtle population going to have more tumors on them? We really don't know. And it'll take three to five years to actually get a handle on that."

The big fear is a recurrence of what happened in Prince William Sound after the Exxon Valdez spill. Some pink salmon, likely exposed to oil in their larval stage, started showing serious abnormalities, including "rare mutations that caused salmon to grow an extra fin or an enlarged heart sac," according to a report in Nature. And then there were the herring. For three years after the spill, herring stocks were robust. But in the fourth year, populations plummeted by almost two-thirds in Prince William Sound and many were "afflicted by a mysterious sickness, characterised by red lesions and superficial bleeding," as Reuters reported at the time. The next year, there were so few fish, and they were so sick, that the herring fishery in Prince William Sound was closed; stocks have yet to recover fully. Since Alaskan herring live for an average of eight years, many scientists were convinced that the crash of the herring stocks was the result of herring eggs and larvae being exposed to oil and toxins years earlier, with the full effects manifesting themselves only when those generations of herring matured (or failed to mature).

Could a similar time bomb be ticking in the gulf? Ian MacDonald at Florida State is convinced that the disturbances beginning to register at the bottom of the food chain are "almost certain to ripple up through other species."

Here is what we know so far. When researchers from Oregon State University tested the waters off Grand Isle, Louisiana, in June, they found that the presence of carcinogenic polycyclic aromatic hydrocarbons (PAHs) had increased fortyfold in just one month. Kim Anderson, the toxicologist leading the study, described the discovery as "the largest PAH change I've seen in over a decade of doing this." June is spawning season in the gulf—the period, beginning in April, when enormous quantities of eggs and larvae drift in nearly invisible clouds in the open waters: shrimp, crabs, grouper, bluefin tuna, snapper, mackerel, swordfish. For western Atlantic bluefin, which finish spawning in June and are fished as far away as Prince Edward Island, these are the primary spawning grounds.

John Lamkin, a fisheries biologist for NOAA, has admitted that "any larvae that came into contact with the oil doesn't have a chance." So, if a cloud of bluefin eggs passed through a cloud of contaminated water, that one silent encounter could well help snuff out a species already on the brink. And tuna is not the only species at risk. In July Harriet Perry, a biologist at the University of Southern Mississippi, found oil droplets in blue crab larvae, saying that "in my forty-two years of studying crabs I've never seen this." Tellingly, this vulnerability of egg and larvae to oil does not appear to have been considered when the Macondo well was approved for drilling. In the initial exploration plan that BP submitted to the government, the company goes on at length about how adult fish and shellfish will be able to survive a spill by swimming away or by "metaboliz[ing] hydrocarbons." The words "eggs" and "larvae" are never mentioned.

See more stories tagged with: