Environment  
comments_image Comments

Genetic Modification of Mosquitoes Could Help Tackle Malaria, But is It Worth It?

New technique injects mosquitoes with a gene that results in mostly male offspring, eventually leading to a population crash.
 
 
Share
 
 
 
 

Scientists have hailed the genetic modification of mosquitoes that could crash the insect’s populations as a “quantum leap” that will make a substantial and important contribution to eradicating malaria.

Previous efforts to tackle the disease,  that kills more than 1 million people each year – most of whom are African children – have included bed nets to protect people and insecticides to kill the mosquito species most responsible for the transmission of malaria (Anopheles gambiae).

The new technique by a team at Imperial College London involves injecting mosquitoes with a gene that causes the vast majority of their offspring to be male, leading to an eventual dramatic decline in population within six generations as females disappear.

“You have a short-term benefit because males don’t bite humans [and transmit malaria],” Andrea Crisanti, one of the authors of the new research,  which was published in the journal Nature Communications on Tuesday, told the Guardian.

“But in the long term you will eventually eradicate or substantially reduce mosquitoes. This could make a substantial contribution to eradicating malaria, combined with other tools such as insecticides.”

The scientists injected mosquitoes with a gene from slime mold – a homing endonuclease called I-PpoI – which attached itself to their X chromosome during the male’s sperm-making process and effectively shredded part of the chromosome’s DNA. The result was that more than 95% of the mosquitoes offspring were males. The researchers found that the modified mosquitoes mated with wild mosquitoes, creating fertile mosquitoes which then overwhelmingly produced male offspring, passing on the gene.

“Under field conditions the accumulation of X chromosome damage would significantly contribute to the demise of target populations,” the scientists say in their paper.

“The engineering is a quantum leap in terms of what has been done before,” said Crisanti, who worked on  previous research in 2008, which took a similar approach but unintentionally resulted in sterile mosquitoes, meaning the gene’s ability to spread was limited. Imperial College London also  published work in 2011 on a distinctly different approach to impair the fertility of mosquitoes generally, rather than distorting the makeup of their sex.

Nikolai Windbichler, a research fellow at Imperial College London and co-author, said that the concept of distorting the sex of a pest’s population is more than 50 years old but that the technology had not been available until now to execute the idea.

“The concept was suggested by Bill Hamilton [the famous evolutionary biologist, W.D. Hamilton], but until now there wasn’t a way to realize it. There are selfish chromosomes around but they’re too complicated, so we created something like this from scratch [the homing gene using synthetic biology], he said. “We found mosquitoes have a genetic Achilles heel.”

Dr Luke Alphey, group leader of the vector-borne viral diseases program at the Pirbright Institute, who was not involved in the research, described it as a “big step forward” and said field trials could be conducted after further testing. “The overall goal of this research program is even more ambitious – to develop a version of this genetic system that will spread itself through the target species, removing females and causing population crash or extinction as it goes,” he said.

Dr Michael Bonsall, reader in zoology at the University of Oxford, described the research as “super cool work” and said: “This has important implications for limiting the spread of malaria.”

Dr Thomas Walker, lecturer at the London School of Hygiene & Tropical Medicine, told the Guardian that the work was “very good science” and “very promising” but said any uncertainty was in how the GM mosquitoes would fare out of the lab and in the field.

 
See more stories tagged with: